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Abstract. The electromagnetic form factor of the kaon meson is calculated in the light-cone formalism
of the relativistic constituent quark model. The calculated K+ form factor is consistent with almost all
of the available experimental data at low-energy scale, while other properties of the kaon could also be
interrelated in this representation with reasonable parameters. Predictions of the form factors for the
charged and neutral kaons at a higher-energy scale are also given, and we find the non-zero K0 form factor
at Q2 �= 0 due to the mass difference between the strange and down quarks inside K0.

PACS. 14.40.Aq π, K, and η mesons – 12.39.Ki Relativistic quark model – 13.40.Gp Electromagnetic
form factors

The light-cone formalism [1,2] provides a convenient
framework for the relativistic description of hadrons in
terms of quark and gluon degrees of freedom. The electro-
magnetic form factor of the pion has been studied and dis-
cussed [3–5] in the light-cone formalism, which has proved
successful in explaining the experimental data. Similar to
the pion, the kaon is also composed by two quarks, but
with different quark masses. Therefore, it becomes a little
more complicated to obtain the light-cone wave function of
the kaon and to compute the kaon space-like form factor.
However, unlike the π0, which has zero form factor due
to its quark and antiquark with opposite charges (i.e., a
pair of quark and antiquark of the same flavor), the K0

form factor will be non-zero due to the different contribu-
tions from the strange (s) and down (d) quarks inside K0.
Thus, measurements of the form factors of the charged
kaon (K±) and neutral kaon (K0 and K

0
) will provide

more information concerning the internal structure of the
mesons.

In order to obtain the light-cone spin space wave func-
tion of the kaon, we transform the ordinary instant-form
SU(6) quark model space wave function of the kaon into
the light-cone dynamics [3,6–8]. In the kaon rest frame
(q1 + q2 = 0), the instant-form spin space wave function
of the kaon is

χT =
(
χ↑

1χ
↓
2 − χ↑

2χ
↓
1

)/√
2, (1)
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in which χ↑,↓
i is the two-component Pauli spinor and the

two quarks have 4-momentum qµ
1 = (q0

1 ,q) and qµ
2 =

(q0
2 ,−q), with q0

i = (m2
i+q2)1/2, respectively. The instant-

form spin states |J, s〉T and the light-cone form spin states
|J, λ〉F are related by a Wigner rotation UJ [9]

|J, λ〉F =
∑

s

UJ
sλ|J, s〉T . (2)

This rotation is called the Melosh rotation [10] for spin-
(1/2) particles. Applying the transformation eq. (2) on
both sides of eq. (1), we can obtain the spin space wave
function of the kaon in the infinite-momentum frame. For
the left side, i.e., the kaon, the transformation is simple
since the Wigner rotation is unity. For the right side, i.e.,
two spin-(1/2) partons, the instant-form and light-front
form spin states are related by the Melosh transforma-
tion [9–11],

χ↑
1(T ) = ω1

[
(q+

1 +m1)χ
↑
1(F )− qR

1 χ
↓
1(F )

]
,

χ↓
1(T ) = ω1

[
(q+

1 +m1)χ
↓
1(F ) + qL

1 χ
↑
1(F )

]
,

χ↑
2(T ) = ω2

[
(q+

2 +m2)χ
↑
1(F )− qR

2 χ
↓
2(F )

]
,

χ↓
2(T ) = ω2

[
(q+

2 +m2)χ
↓
1(F ) + qL

2 χ
↑
2(F )

]
, (3)

where ωi = [2q+
i (q

0
i +mi)]−1/2, qR,L

i = q1
i ± q2

i , and q+
i =

q0
i + q3

i . Then we get the light-cone spin wave function for
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the kaon,

χK(x,k⊥) =
∑

λ1,λ2

CF
0 (x,k⊥, λ1, λ2)χλ1

1 (F )χλ2
2 (F ), (4)

where the component coefficients CF
J=0(x,k⊥, λ1, λ2),

when expressed in terms of the instant-form momentum
qµ = (q0,q), have the forms

CF
0 (x,k⊥, ↑, ↓) =

ω1ω2

[
(q+

1 +m1)(q+
2 +m2)− q2

⊥
]
/
√
2,

CF
0 (x,k⊥, ↓, ↑) =

−ω1ω2

[
(q+

1 +m1)(q+
2 +m2)− q2

⊥
]
/
√
2,

CF
0 (x,k⊥, ↑, ↑) =

ω1ω2

[
(q+

1 +m1)qL
2 − (q+

2 +m2)qL
1

]
/
√
2,

CF
0 (x,k⊥, ↓, ↓) =

ω1ω2

[
(q+

1 +m1)qR
2 − (q+

2 +m2)qR
1

]
/
√
2, (5)

which satisfy the relation∑
λ1,λ2

CF
0 (x,k⊥, λ1, λ2)∗CF

0 (x,k⊥, λ1, λ2) = 1. (6)

We can see that there are also two higher-helicity (λ1 +
λ2 = ±1) components in the expression of the light-
cone spin wave function of the kaon besides the ordinary-
helicity (λ1 + λ2 = 0) components. Such higher-helicity
components [3–5] come from the Melosh rotation, and the
same effect plays an important role to understand the pro-
ton “spin puzzle” in the nucleon case [11,12].

Furthermore, we still have to know the space wave
function. Unfortunately, there is no exact solution of the
Bethe-Salpeter equation for the kaon at present. Approx-
imately, we can adopt the commonly used harmonic-
oscillator wave function

ϕ(q2) = A exp[−q2/2β2] , (7)

which is a non-relativistic solution of the Bethe-Salpeter
equation in an instantaneous approximation in the rest
frame for meson [13]. By assuming that the relation be-
tween the instant-form momentum q = (q3,q⊥) and the
light-cone momentum k = (x,k⊥) is by no means unique,
and according to the light-cone formalism, we construct
models to relate them. In this presentation, we adopt the
connection [6–8] in the light-front dynamics:

x1M = q0
1 + q3

1 ,

x2M = q0
2 + q3

2 ,

k⊥ = q⊥, (8)

here xi (i = 1, 2), with x1 + x2 = 1, is the light-cone
momentum fraction of the quark in the 2-particle Fock
state. In the rest frame (q1 + q2 = 0), from eq. (8) we can
find that M satisfies

M2 =
m2

1 + k2
⊥

x1
+

m2
2 + k2

⊥
x2

. (9)

If we let x1 = x, then we can get x2 = 1−x. Then eq. (9)
can be written as follows:

M2 =
m2

1 + k2
⊥

x
+

m2
2 + k2

⊥
1− x

. (10)

From eq. (8) we can also obtain

q0
1 =

1
2
Mx+

k2
⊥ +m2

1

2xM
,

q3
1 =

1
2
Mx− k2

⊥ +m2
1

2xM
, (11)

q0
2 =

1
2
M(1− x) +

k2
⊥ +m2

2

2(1− x)M
,

q3
2 =

1
2
M(1− x)− k2

⊥ +m2
2

2(1− x)M
. (12)

From eq. (11) and eq. (12) we can easily find that q3
1 =

−q3
2 . Thus, we have

q+
1 = xM,

q+
2 = (1− x)M, (13)

2q+
1 (q

0
1 +m1) = (xM +m1)2 + k2

⊥,

2q+
2 (q

0
2 +m2) = [(1− x)M +m2]2 + k2

⊥. (14)

Then we can get

q2 = (q1)2 = (q2)2 =
1
4
M2 +

(m2
1 −m2

2)
2

4M2
− 1

2
(m2

1 +m2
2),

(15)
where

M2 =
m2

1 + k2
⊥

x
+

m2
2 + k2

⊥
1− x

.

There is still another way to obtain eq. (15). Brodsky-
Huang-Lepage suggested a connection between the equal-
time wave function in the rest frame and the light-cone
wave function by equating the off-shell propagator ε =
M2 − (

∑n
i=1ki)

2 in the two frames [14]:

ε =




M2 − (
∑n

i=1 q
0
i )

2,∑n
i=1 qi = 0, (c.m.)

M2 − ∑n
i=1

k2
⊥i+m2

i

xi
,∑n

i=1 k⊥i = 0,
∑n

i=1 xi = 1. (l.c.)

From the equation above, for two-particle systems one can
get

q2 =
1
4

(
k2
⊥ +m2

1

x
+

k2
⊥ +m2

2

1− x

)

+
(m2

1 −m2
2)

2

4
(

k2
⊥+m2

1
x + k2

⊥+m2
2

1−x

) − 1
2
(m2

1 +m2
2). (16)
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Obviously, eq. (15) and eq. (16) are the same, that is
to say that, although we have employed different assump-
tions at the beginning, we obtain the same result of q2

at last. This may indicate that the model that we have
established is self-explained.

By adopting the Brodsky-Huang-Lepage (BHL) pre-
scription [2], we can obtain

ϕBHL = A0 exp

[
−

k2
⊥+m2

1
x + k2

⊥+m2
2

1−x

8β2

− (m2
1 −m2

2)
2

8β2
(

k2
⊥+m2

1
x + k2

⊥+m2
2

1−x

)
]
, (17)

in which we let A0 = A exp
[

m2
1+m2

2
4β2

]
. The contributions

from non-zero transversal momentum |k⊥| in the end-
point x → 0 and x → 1 regions are highly suppressed by
the exponential fall-off, so this wave function provides an
automatic cut-off on |k⊥|. This feature is introduced via
the BHL prescription which relies on the free light-cone
Hamiltonian.

Therefore, the light-cone wave function for the kaon
can be written as follows:

ψ = ϕBHLχ
K(x,k⊥), (18)

in which the parameters are the normalization constant
A0, the harmonic scale β and the quark masses m1 and
m2. Thus, we employ the following four constraints to ad-
just those above four parameters:

1) The normalization condition∫
d2k⊥dx
16π3

ψ∗ψ =
∫

d2k⊥dx
16π3

ϕ∗
BHLϕBHL = 1, (19)

which is essentially a valence quark dominance assump-
tion [3].

2) The weak-decay constant fK = 113.4 MeV is de-
fined [15,16] from K → µ ν decay, thus one obtains∫ 1

0

dx
∫

d2k⊥
16π3

(k+
1 +m1)(k+

2 +m2)− k⊥2[
(k+

1 +m1)2+k⊥2
]1/2[

(k+
2 +m2)2+k⊥2

]1/2

·ϕBHL =
fK

2
√
3
. (20)

3) The charged mean-square radius of K+ is defined as

〈r2
K+〉 = −6∂FK+(Q2)

∂Q2
|Q2=0. (21)

We can find the experimental value of 〈r2
K±〉 = 0.34±0.05

fm2 [17], and 〈r2
K−〉 = 0.28± 0.05 fm2 [18].

4) The charged mean-square radius of K0 is defined as

〈r2
K0〉 = −6∂FK0(Q2)

∂Q2
|Q2=0. (22)

We can find the experimental value of 〈r2
K0〉 = −0.054 ±

0.026 fm2 [19].

Therefore, we can obtain m1 = 500 MeV (e.g., the
strange quark), m2 = 250 MeV (e.g., the up quark or the
down quark, assuming mu = md ), β = 393 MeV and
A0 = 0.0742. It is interesting to notice that the masses
of the strange quarks and the light-flavor quarks from the
above constraints are just in the correct range of the con-
stituent quark masses from more general considerations.

Reversely, we can compute the value of fK , 〈r2
K+〉, and

〈r2
K0〉 by using the four parameters above

fK = 113.3 MeV,
〈r2

K+〉 = 0.30 fm2,

〈r2
K0〉 = −0.055 fm2. (23)

The results fit the experimental values well. Naturally, the
form factor results emerging from this assumption are in
quite good agreement with the experimental data. More-
over, the values of the parameters(m1, m2, β) are com-
patible with other quark models [16,20,21].

Since the Wigner rotation relating spin state in differ-
ent frames is unity under kinetic Lorentz transformation
in the light-cone formalism, the spin structures of hadrons
are the same in different frames related by Lorentz trans-
formation. Therefore, we can calculate the electromag-
netic form factor from the Drell-Yan-West formula [22]
by using the light-cone formalism

F (Q2) =
∑
n,λi

∑
j

ej

∫
[dx][d2k⊥]

×ψ∗
n(xi,k⊥i, λi)ψn(xi,k′

⊥i, λi), (24)

where k′
⊥i = k⊥i −xiq⊥+q⊥ for the struck quark, k′

⊥i =
k⊥i−xiq⊥ for the spectator quarks, [d2k⊥] = d2k⊥/16π3,
ej is the electric charge of the struck quark, and the
virtual-photon momentum qµ is specified with q+ = 0 to
eliminate the Z-graph contributions [1,2,23]. Other choice
of qµ will cause contributions from Z-graphs, and it should
give the same result as that in the case of q+ = 0 if all
the graphs are taken into account [24]. In the light-cone
formalism, there is a relation between Q2 and q2

⊥:

−Q2 = q2 = q+q− − q2
⊥. (25)

Since q+ = 0, then according to eq. (25), one can easily
get q2

⊥ = Q2.
Because K+ = us and K− = su, one can find that

FK+(Q2) = −FK−(Q2) according to eq. (24). Thereby,
we just need to calculate the K+ form factor

FK+(Q2) =
1
3
e

∫
dx

d2k⊥
16π3

M1

×ϕ∗(x,k⊥,m1,m2)ϕ(x,k′
⊥,m1,m2)

+
2
3
e

∫
dx

d2k⊥
16π3

M2

×ϕ∗(x,k⊥,m2,m1)ϕ(x,k′
⊥,m2,m1), (26)

where k′
⊥ = k⊥+(1−x)q⊥ is the internal quark transverse

momentum of the struck kaon in the center-of-mass frame,
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Fig. 1. The K+ form factor calculated with the wave func-
tion in the BHL prescription at low Q2 compared with the
experimental data. The data are taken from refs. [17] and [18].

and

M1=
(a1a2−k2

⊥)(a
′
1a

′
2−k′

⊥
2)+(a1+a2)(a′1+a′2)k⊥ · k′

⊥[
(a2

1+k2
⊥)(a

2
2+k2

⊥)(a
′
1
2+k′

⊥
2)(a′2

2+k′
⊥

2)
]1/2

,

(27)

M2=
(b1b2−k2

⊥)(b
′
1b

′
2−k′

⊥
2)+(b1+b2)(b′1+b′2)k⊥ · k′

⊥[
(b21+k2

⊥)(b
2
2+k2

⊥)(b
′
1
2+k′

⊥
2)(b′2

2+k′
⊥

2)
]1/2

,

(28)

in which

a1 = xMa +m1, m1 = ms = 500 MeV,
a2 = (1− x)Ma +m2, m2 = mu = 250 MeV,
a′1 = xM ′

a +m1,

a′2 = (1− x)M ′
a +m2,

b1 = xMb +m2,

b2 = (1− x)Mb +m1,

b′1 = xM ′
b +m2,

b′2 = (1− x)M ′
b +m1, (29)

and in which

M2
a =

m2
1 + k2

⊥
x

+
m2

2 + k2
⊥

1− x
,

M ′2
a =

m2
1 + k′2

⊥
x

+
m2

2 + k′2
⊥

1− x
,

M2
b =

m2
2 + k2

⊥
x

+
m2

1 + k2
⊥

1− x
,

M ′2
b =

m2
2 + k′2

⊥
x

+
m2

1 + k′2
⊥

1− x
. (30)

For the same reason, since K0 = ds and K
0
= sd,

one can also find that FK0(Q2) = −F
K

0(Q2) according to
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Fig. 2. Theoretical electromagnetic form factor of K+ and
K0, represented by the solid and dashed lines, respectively.
The data for K+ are taken from ref. [18].

eq. (24). Thereby, we just need to calculate the K0 form
factor

FK0(Q2) =
1
3
e

∫
dx

d2k⊥
16π3

M1

×ϕ∗(x,k⊥,m1,m2)ϕ(x,k′
⊥,m1,m2)

−1
3
e

∫
dx

d2k⊥
16π3

M2

×ϕ∗(x,k⊥,m2,m1)ϕ(x,k′
⊥,m2,m1). (31)

The definitions of the M1 and M2 are the same with the
definitions in the calculation of K+ form factor which we
have given above.

Because of the existence of a mass difference between
the down quark and the strange quark, we find that
FK0(Q2) = 0 at Q2 = 0. In comparison, we may note that
Fπ0(Q2) ≡ 0 because π0 has zero charge and equal quark
masses. Naturally, we can figure out that the non-zero K0

form factor is strongly dependent on the value of the mass
difference between the strange quark and the down quark.
This aspect is useful to reveal the different contributions
from the strange and down quarks inside K0.

Figure 1 indicates that in the case of low Q2, the the-
oretical values of the K+ form factor fit the experimental
data very well. The same model can also provide very good
description of the charged-pion form factor for Q2 ≤ 2
(GeV/c)2 [3]. Because we are in lack of experimental data
for K+ in the higher-energy scale, we give the predictions
of the Q2FK(Q2) values for K+ and K0 in fig. 2. Since K0

has zero charge, we can see that its electromagnetic form
factor is much less than that of K+. Thus, high precision
is needed to measure the K0 form factor experimentally,
since the electroproduction cross-section is small.

It is necessary to point out that this work should be
considered as a light-cone version of the relativistic con-
stituent quark model [3,25], and it should be only valid
in the low-energy scale of about Q2 ≤ 2 (GeV/c)2. Sim-
ilar works on the kaon have also been given in [20,26].
It is different from the light-cone perturbative QCD ap-
proach [2], which is applicable at the high-energy scale of
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Q2 > 2 (GeV/c)2. The reason is that the hard-gluon ex-
changes between the quark-antiquark of the meson should
be considered at high Q2, and this feature is incorporated
in the light-cone perturbative QCD approach. An ordinary
input wave function may contain uncertainties which in-
valid the prediction at high Q2 in the constituent quark
model framework. If the constituent quark model predic-
tion is happened to work at a higher Q2, it might be by
chance or may imply a reasonable input wave function
that contains some features simulating the hard-gluon ex-
changes. So the agreement of a constituent quark model
prediction with experiments might serve as a support of
the applicability of the input wave function from a low-
energy scale to a somewhat higher scale.

In summary, we calculated the electromagnetic form
factor of the kaon by adopting the light-cone formalism of
the relativistic constituent quark model. By adjusting the
parameters through the experimental values of the weak-
decay constant and the charged mean-square radius, the
model can give a good fit to the available experimental val-
ues of kaon form factors. We also predicted the form fac-
tors for both charged and neutral kaons, K± and K0. We
expect the predictions to be valid when Q2 ≤ 2 (GeV/c)2
at a low-energy scale. A non-zero form factor of K0 is
predicted at Q2 = 0, and it will be useful to reveal the
different contributions from strange and down quarks in-
side K0.
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